
Proficient Method towards Concurrency Control in
Distributed Database

Anil Ahir

Sr. Lecturer ,Babasaheb Gawde Institute of Technology,

Mumbai, India

Abstract-Majority of the research in database management system
focuses primarily on centralized database systems. However, with the
demand for higher performance and higher availability, database
systems have moved from centralized to distributed architectures. As
the development and maturity of the popular centralized database
system moves towards the distributed approach, the challenges and
roles start becoming more complex and complicated. The discussion
revolves around the variety of protocols, their working, their
advantages and their disadvantages in a distributed
environment.Concurrency control is an integral part of database
systems. In literature various techniques have been discussed which
are used to prevent, detect and resolve the deadlocks. In this report I
have analyzed various concurrency control protocol and the deadlock
detection and resolution techniques.

Keywords:Timestamp, classification, threshold, testing.

1. INTRODUCTION
The concurrency control in distributed DBMS’s is an
important research problem. In a distributed database
system, data in the system can be accessed by different
users at the same time. If these concurrent accesses are not
controlled properly, the database will become inconsistent
during multiple concurrent updates to the database. Such
inconsistencies may give rise to several problems The term
‘Distributed’ in the concept of ‘Distributed Databases’
clearly means the environment of the database system that
it is not at one place or location but exist in at physically
autonomous locations with some interconnection in the
logical plan. The ‘Distributed Database’ can be thought of
as a collection of multiple, logically interrelated databases
distributed over a computer network in such a way the
distribution is clear to the users. The fact that the database
is located at multiple sites obviously means that it promotes
availability of data to multiple users concurrently without
losing the integrity and accuracy of the database.
Distributed database as equated to the Centralized database
varies mainly in the way the data is truly stored and
located. Hence the data is not present at one place it shows
the concept of Fragmentation and Replication [9]
Several issues could be generated if concurrency of
transaction is not handle technically For example, it might
lead to the lost update problem in a funds transfer
transaction. It may be, however, almost impossible to
execute a task, such as funds transfer usually consisting of
a sequence of several atomic operations, without
temporarily violating the integrity constraints. However,
these atomic operations can be grouped into time_units of
consistency called transactions. Thus if a transaction starts
with a consistent database and the transaction is run by
itself to completion, it is guaranteed to produce a consistent
database.

2. DISTRIBUTED DATABASE SYSTEM
2.1Summary on Distributed database Systems
A distributed database management system (DDBMS)
manages the database as if it were all stored on the same
computer. A distributed database is a database in which
shares of the database are stored on multiple computers
within a network. Users have admittance to the share of the
database at their location so that they can access the data
relevant to their tasks without interfering with the work of
others.The DDBMS synchronizes all the data periodically
and, in cases where multiple users must access the same
data, ensures that updates and deletes performed on the data
at one location will be automatically reflected in the data
stored elsewhere.

FIG. 1 Distributed database conceptual diagram

2.2Serializability
When more than one transaction is executed by the
operating system in a multiprogramming environment,
there are possibilities that instructions of one transaction
are interleaved with some other transaction.[10]

 Schedule: A chronological execution sequence of
transaction is called schedule. A schedule can have many
transactions in it, each comprising of number of
instructions/tasks.

 Serial Schedule: A schedule in which transaction are
aligned in such a way that one transaction is executed first.
When the first transaction completes its cycle then next
transaction is executed. Transactions are ordered one after
other. This type of schedule is called serial schedule as
transactions are executed in a serial manner.

Anil Ahir / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7521-7524

www.ijcsit.com 7521

2.3 Deadlock
In computer science, deadlock refers to a specific
condition when two or more processes are each waiting for
another to release a resource, or more than two processes
are waiting for resources in a circular chain (see Necessary
conditions). Deadlock is a common problem in
multiprocessing where many processes share a specific
type of mutually exclusive resource known as
a software, or soft, lock. Computers intended for the time-
sharing and/or real-time markets are often equipped with
a hardware lock (or hard lock) which guarantees exclusive
access to processes, forcing serialization. Deadlocks are
particularly troubling because there is no general solution
to avoid (soft) deadlocks.[9]
This situation may be understood by an analogy with two
people who are drawing diagrams, with only one pencil and
one ruler between them. If one person takes the pencil and
the other takes the ruler, a deadlock occurs when the person
with the pencil needs the ruler and the person with the ruler
needs the pencil, before he can give up the ruler. Both
requests can't be satisfied, so a deadlock occurs.[9]
2.3.1 Dead lock prevention
Deadlocks can be prevented by ensuring that at least one of
the following four conditions occur:
 Removing the mutual exclusion condition means that

no process may have exclusive access to a resource.
This proves impossible for resources that cannot be
spooled, and even with spooled resources deadlock
could still occur. Algorithms that avoid mutual
exclusion are called non-blocking synchronization
algorithms.

 The "hold and wait" conditions may be removed by
requiring processes to request all the resources they
will need before starting up (or before embarking upon
a particular set of operations); this advance knowledge
is frequently difficult to satisfy and, in any case, is an
inefficient use of resources. Another way is to require
processes to release all their resources before
requesting all the resources they will need. This too is
often impractical. (Such algorithms, such as serializing
tokens, are known as the all-or-none algorithms.)

 A "no preemption" (lockout) condition may also be
difficult or impossible to avoid as a process has to be
able to have a resource for a certain amount of time, or
the processing outcome may be inconsistent or
thrashing may occur. However, inability to enforce
preemption may interfere with a priority algorithm.
(Note: Preemption of a "locked out" resource generally
implies a rollback, and is to be avoided, since it is very
costly in overhead.) Algorithms that allow preemption
include lock-free and wait-free algorithms and
optimistic concurrency control.

 The circular wait condition: Algorithms that avoid
circular waits include "disable interrupts during critical
time_unittions" , and "use a hierarchy to determine a
partial ordering of resources" (where no obvious
hierarchy exists, even the memory address of
resources has been used to determine ordering) and
Dijkstra's solution.[9]

3. CONCURRENCY CONTROL TECHNIQUES FOR

DISTRIBUTED DATABASE

3.1 Priority Based Locking
In the proposed protocol we assume that the database is
fully replicated. The system consists of N number of nodes
consisting of different transactions. Each node sends its
read/write request to a global node. Global node assigns the
requested lock to the transaction having the higher priority.
A waiting queue is maintained in which the transactions
waiting for a lock are placed. First, we find the total
execution time of the transactions performing read/write
operation on the basis of timestamp based priority. Then we
find the total execution time of transactions on the basis of
read transactions being assigned a higher priority. Then we
compare the results from both the cases.

FIG. 2 Distributed Locking Concurrency Control Protocol

Each transaction is assigned a unique timestamp whenever
it enters the system. When a transaction T1 arrives at node
X with timestamp t1 and T2 arrives at node Y with the
timestamp t2, the following steps are performed (shown in
Fig 2):
� Node X and node Y requests from the global node the

locks for all the entities referenced by the transaction
T1 and T2.

� The global node checks all the requested locks. If some
entity is already locked by another transaction, then the
request is queued. There is a queue for each entity and
the request waits in one queue at a time. If the request
is for read lock then the global node grants the
read_lock to all the requested transactions at same time
because the proposed method works on assigning
higher priority to the transactions requesting for read
lock.

� When the transactions get all its read locks, they are
executed at the global node (the execution can also
take place at node X, but that may require more
messages). The execution time of read transactions is
calculated as the maximum time of all the transactions
requesting for read lock. The values of read set are
read from the database, necessary computations are
carried out and the locks are released when the
transaction completes. The global node then assigns
the lock to the next transaction waiting for write lock
in the queue. Necessary computations are carried out

Anil Ahir / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7521-7524

www.ijcsit.com 7522

and the values of the write set are written in the
database at the global node.

� The values of the write set are transmitted by the
global node to all other nodes.

� Each node receives the new write set and updates the
database; then an acknowledgment is sent back to the
global node.

� When the global node receives acknowledgments from
all other nodes in the system, it knows that transaction
T1 has been completed at all nodes. The global node
releases the locks and starts processing the next
transaction [7]

3.2 Threshold and Classification Based Locking
• All the transaction is classified according to its

execution time.
• Classification is done on basis of Threshold Time

value (T)
• Those transactions satisfy the T will group into

once.
• Groups are classified on the basis of T value,

every next group will follow 2 Times the T value
of its successor group

• All transaction will be grouped according to its
execution time.

• Classification will be on until all transaction is
grouped.

• Once the classification is done the scheduler now
keep track on ET, An ET is an threshold time
given to any group for execution.

• After expiry of ET a next group is selected.
• If no transaction left, ET restart and next group is

selected. Until no transaction left in any group

4. COMPUTING EXECUTION TIME ON THE BASIS OF

THRESHOLD AND CLASSIFICATION.
Consider an Example to test this algorithm
T1(r)=2time_unit,
T2(r)=2time_unit,T3(w)=3time_unit,T4(r)=3time_unit,
T5(r)=4time_unit, T6(w)=5time_unit, T7(r)=6time_unit,
T8(r)=6time_unit,T9(w)=2time_unit,T10(r)=3time_unit
According to algorithm
We need to select T value
Let Value of T=2

• Scheduler will now classify the above transaction
according to T, where T=2time_unit.

Hence all above transaction will now follow the below
given group

• First Group=T1,T2,T9------------- less than 2
time_unit’s (T)

• Time_unitond Group=T3,T4,T5,T10----> more
than 2 and less than 4time_unit’s (2T)

• Third Group=T6,T7,T8------------more than 4
and less than 8time_unit’s (4T)

Now ET need to be select, Let ET time is 6 time unit
Therefore now for execution, each group will be executed
not more than 6 Time_units.
Within ET time limit if no transaction left in a group new
transaction from higher adjacent group will be selected.
While executing Read transaction, the read process can run
parallel hence more than one read transaction can be
executed, hence when multiple read instruction are
executed , the transaction with higher execution time is
taken under consideration.

For First ET cycle.
From Group A & B T1+T2+T9+T3=5time_unit

T class (<=2
Time_unit)

2Tclass (<=4 and
>2 Time_unit)

4T class (<=8 and
>4 Time_unit)

GROUP A GROUP B GROUP C
T1 Read 2tu T3 Write 3tu T6 Write 5tu
T2 Read 2tu T4 Read 3tu T7 Read 6tu
T9 Read 2tu T5 Read 4tu T8 Read 6tu

 T10 Read 3tu

At first ET cycle T1,T2,T9 are read instruction hence they
are executed parallel with higher time unit that is 2, hence
all 3 transcation will execute in 2time_unit hence, still
time_unit remain in ET1 therefore higher adjacent group is
selected and T3 which is write instruction all fall below
remain ET1 time. Hence T3 is executed separately. Later 1
time_unit remain and next instruction in group B is of 3
time_unit hence ET1 is terminated

For second ET cycle.
From Group B, T4+T5+T10=4time_unit

At this cycle T4, T5 and T10 are executed parallel because
they are read instruction ant T5 has higher tu value among
them of 4tu. Therefore no other transaction left in same
group and 2 time_unit left in ET2 hence higher adjacent
group is selected but no transaction available less than 2
time_unit. hence ET2 is terminated.

For third ET cycle
From Group C,T6=5time_unit

T class (<=2
Time_unit)

2Tclass (<=4
and >2

Time_unit)

4T class (<=8
and >4

Time_unit)
GROUP A GROUP B GROUP C
T1 Read 2tu T3 Write 3tu T6 Write 5tu
T2 Read 2tu T4 Read 3tu T7 Read 6tu
T9 Read 2tu T5 Read 4tu T8 Read 6tu

 T10 Read 3tu

T class
(<=2 Time_unit)

2Tclass (<=4 and
>2 Time_unit)

4T class (<=8 and
>4 Time_unit)

GROUP A GROUP B GROUP C
T1 Read 2tu T3 Write 3tu T6 Write 5tu
T2 Read 2tu T4 Read 3tu T7 Read 6tu
T9 Read 2tu T5 Read 4tu T8 Read 6tu

 T10 Read 3tu

T class
(<=2 Time_unit)

2Tclass (<=4 and
>2 Time_unit)

4T class (<=8 and
>4 Time_unit)

GROUP A GROUP B GROUP C
T1 Read 2tu T3 Write 3tu T6 Write 5tu
T2 Read 2tu T4 Read 3tu T7 Read 6tu
T9 Read 2tu T5 Read 4tu T8 Read 6tu

 T10 Read 3tu

Anil Ahir / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7521-7524

www.ijcsit.com 7523

At this Cycle of ET only T6 which is write instruction is
executed isolated, hence no other transaction falls in
remaining time of ET3

For Fourth ET cycle
From Group C,T7+T8=6time_unit

All 10 transaction is executed in
ET1+ET2+ET3+ET4=5+4+5+6= 20 Time_unit.

CONCLUSION
If the same example is to executed on basis of time
priority3.1 above shown it would take 25 Time_unit to
finish

REFERENCES
[1] M. Kaur and H. Kaur, “Concurrency Control in Distributed Database

System”, International journal of Advanced Research in Computer
Science and Software Engineering, vol. 3,Issue 7, July 2013, pp.
1413-1417

[2] Gupta V.K., Gupta Dhiraj and ShuklaDatta, “Concurrency Control
and Time_uniturity issues of Distributed Databases Transaction”,
Research Journal of Engineering Science, vol. 1(2),Aug 2012, pp.
70-73

[3] A. Yadav and A. Agarwal, “An Approach for Concurrency Control
in Distributed Database System”, International Journal of Computer
Science & Communication, vol. 1, no. 1, Jan 2010, pp 137-141

[4] S. Jitendra and Gupta V.K, “Concurrency Issues of Distributed
Advance Transaction Process”, ReseachJournal of Recent Sciences,
vol. 1, Feb 2012, pp 426-429

[5] K. Ganesh, K. Ajit and A. Umesh, “Concept and techniques of
transaction processing of Distributed Database management system”,
International Journal of Computer Architecture and Mobility, vol-1,
issue-8, June 2013, pp 1-4

[6] Svetlana ZhelyazkovaVasileva and AleksandarPetrovMilev,
“Models of 2PL Algorithm with Timestamp Ordering for Distributed
Transaction Concurrency Control”, International Journal of Soft
Computing and Engineering,vol-3, issue-4, September 2013, pp.
247-252

[7] MinakshiSangwan, “Priority-Based Locking for Concurrency
Control in Distributed Databases”, International Journal of
Engineering Trends and Technology, vol-12, number-4, June 2014,
pp. 170-175

[8] Swati Gupta and MeenuVijarania, “Analysis for Deadlock Detection
and Resolution Techniques in Distributed Database”, International
Journal of Advanced Research in Computer Science and Software
Engineering, vol-3, issue-7, July 2013, pp. 399-403

[9] Anjali Ganesh Jivani “An Insight into Concurrency Control
Protocols of Distributed Databases” International Journal of
Emerging Science and Engineering (IJESE), Volume-1, Issue-12,
October 2013

T class (<=2
Time_unit)

2Tclass (<=4 and
>2 Time_unit)

4T class (<=8 and
>4 Time_unit)

GROUP A GROUP B GROUP C
T1 Read 2tu T3 Write 3tu T6 Write 5tu
T2 Read 2tu T4 Read 3tu T7 Read 6tu
T9 Read 2tu T5 Read 4tu T8 Read 6tu

 T10 Read 3tu

Anil Ahir / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7521-7524

www.ijcsit.com 7524

